The Banach-Zarecki theorem for functions with values in metric spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new proof for the Banach-Zarecki theorem: A light on integrability and continuity

To demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the Banach-Zareckitheorem is presented on the basis of the Radon-Nikodym theoremwhich emphasizes on measure-type properties of the Lebesgueintegral. The Banach-Zarecki theorem says that a real-valuedfunction $F$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

Absolutely Continuous Functions with Values in Metric Spaces

(see e.g. [1, Lemma 1.1]), we could without any loss of generality work with Banach spaces only. The main obstacle in dealing with metric spaces (or arbitrary Banach spaces) is the absence of the Radon-Nikodým property and the resulting non-existence of derivatives. Thus, instead of the “usual” derivative, we have to employ the notion of a “metric derivative” (which was introduced by Kirchheim ...

متن کامل

A new metric invariant for Banach spaces

We show that if the Szlenk index of a Banach space X is larger than the first infinite ordinal ω or if the Szlenk index of its dual is larger than ω, then the tree of all finite sequences of integers equipped with the hyperbolic distance metrically embeds into X. We show that the converse is true when X is assumed to be reflexive. As an application, we exhibit new classes of Banach spaces that ...

متن کامل

Stochastic Integration for Lévy Processes with Values in Banach Spaces

A stochastic integral of Banach space valued deterministic functions with respect to Banach space valued Lévy processes is defined. There are no conditions on the Banach spaces nor on the Lévy processes. The integral is defined analogously to the Pettis integral. The integrability of a function is characterized by means of a radonifying property of an integral operator associated to the integra...

متن کامل

a new proof for the banach-zarecki theorem: a light on integrability and continuity

to demonstrate more visibly the close relation between thecontinuity and integrability, a new proof for the banach-zareckitheorem is presented on the basis of the radon-nikodym theoremwhich emphasizes on measure-type properties of the lebesgueintegral. the banach-zarecki theorem says that a real-valuedfunction $f$ is absolutely continuous on a finite closed intervalif and only if it is continuo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2005

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-05-07959-1